login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest m such that A116939(m) = n.
10

%I #61 Sep 16 2022 03:57:50

%S 0,3,6,11,16,23,30,39,48,59,70,83,96,111,126,143,160,179,198,219,240,

%T 263,286,311,336,363,390,419,448,479,510,543,576,611,646,683,720,759,

%U 798,839,880,923,966,1011,1056,1103,1150,1199,1248,1299,1350,1403,1456

%N Greatest m such that A116939(m) = n.

%C From _Andrew Rupinski_, Nov 30 2009: (Start)

%C For n > 0, a(n) appears to be the set such that binomial(2*a(n),r) - binomial(2*a(n),r-2) = binomial(2*a(n),s) - binomial(2*a(n),s-2) for some r != s.

%C As a consequence of the Weyl Dimension Formula and the above comment, a(n) also appears to be the indices k such that the Symplectic Group Sp(k) has two fundamental irreducible representations of the same dimension. (End)

%H Reinhard Zumkeller, <a href="/A116940/b116940.txt">Table of n, a(n) for n = 0..1000</a>

%H John Tyler Rascoe, <a href="/A116940/a116940.jpg">Illustration of the first 10 terms</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(0) = 0, a(n+1) = a(n) + 2*floor(n/2) + 3.

%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - _Joerg Arndt_, Apr 02 2011

%F G.f.: x*(3 - x^2)/((1 + x)*(1 - x)^3). - _Arkadiusz Wesolowski_, Jan 01 2012

%F a(n) = 2n + ceiling(n^2/2). - _Wesley Ivan Hurt_, Jun 14 2013

%F a(n) = (2*n*(n + 4) - (-1)^n + 1)/4. - _Bruno Berselli_, Jun 14 2013

%F a(n) = A081352(n) - A236283(n + 1). - _Miko Labalan_, Dec 04 2016

%F From _Klaus Purath_, Jan 26 2020: (Start)

%F a(n) = binomial(n+2, 2) + floor((n-1)/2).

%F a(n) = floor(A028884(n)/2) - n.

%F a(n) = (n+1)^2 - A099392(n+1).

%F a(2*n)^2 - a(2*n-1)*a(2*n+1) = 3, n > 0.

%F a(2*n+1)^2 - a(2*n)*a(2*n+2) = (2*n+3)^2. (End)

%F E.g.f.: (1/2)*(x*(5 + x)*cosh(x) + (1 + 5*x + x^2)*sinh(x)). - _Stefano Spezia_, Jan 26 2020

%F a(n) = A000217(2*n) - 2*A001859(n-1) for n>0. - _John Tyler Rascoe_, Jul 31 2022

%F Sum_{n>=1} 1/a(n) = 11/8 + tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - _Amiram Eldar_, Sep 16 2022

%e a(n) = A000982(n) + A005843(n).

%e From _Andrew Rupinski_, Nov 30 2009: (Start)

%e a(1) = 3 and binomial(6,3)-binomial(6,1) = binomial(6,2)-binomial(6,0).

%e a(1) = 3 and the fundamental representations of Sp(3) are of dimensions 6, 14 and 14. a(2) = 6 and the fundamental representations of Sp(6) are of dimensions 12, 65, 208, 429, 572, and 429. (End)

%p seq( (2*(n+2)^2 -(-1)^n -7)/4, n=0..55); # _G. C. Greubel_, Jan 26 2020

%t a = {0}; Do[AppendTo[a, If[Count[a, #-1] > #-1, #+1, #-1]] &@ a[[n]], {n, 1500}]; Most@ Values@ Map[Last, PositionIndex@ a] - 1 (* _Michael De Vlieger_, Dec 07 2016, Version 10 *)

%t Table[(2*(n+2)^2 -(-1)^n -7)/4, {n,0,55}] (* _G. C. Greubel_, Jan 26 2020 *)

%o (Haskell)

%o import Data.List (elemIndices)

%o a116940 n = last $ elemIndices n $ takeWhile (<= n + 1) a116939_list

%o -- _Reinhard Zumkeller_, Jun 28 2013

%o (PARI) vector(56, n, (2*(n+1)^2 +(-1)^n -7)/4) \\ _G. C. Greubel_, Jan 26 2020

%o (Magma) [(2*n*(n+4) -(-1)^n +1)/4: n in [0..55]]; // _G. C. Greubel_, Jan 26 2020

%o (Sage) [(2*n*(n+4) -(-1)^n +1)/4 for n in (0..55)] # _G. C. Greubel_, Jan 26 2020

%Y Cf. A116939.

%Y Cf. A081352, A236283.

%Y Cf. A028884, A099392.

%Y Cf. A000217, A001859.

%K nonn,easy

%O 0,2

%A _Reinhard Zumkeller_, Feb 27 2006