The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236288 a(n) = sigma(n)^n / sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n. 1
 1, 1, 4, 7, 216, 144, 32768, 50625, 4826809, 34012224, 5159780352, 481890304, 4049565169664, 63403380965376, 1521681143169024, 25408476896404831, 6746640616477458432, 12381557655576425121, 13107200000000000000000, 53148384174432398229504, 38685626227668133590597632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: number 1 is the only number n such that sigma(n)^(n - tau(n)) = sigma(n+1)^(n + 1 - tau(n+1)). Conjecture: number 1 is the only number n such that sigma(n)^(n - tau(n)) = sigma(k)^(k - tau(k)) has solution for distinct numbers n and k. LINKS Jaroslav Krizek, Table of n, a(n) for n = 1..50 FORMULA a(n) = sigma(n)^(n - tau(n)). a(n) = A217872(n) / A236287(n) = A000203(n)^n / A000203(n)^A000005(n) = A000203(n)^A049820(n). EXAMPLE a(4) = sigma(4)^(4 - tau(4)) = 7^(4 - 3) = 7. MATHEMATICA Table[DivisorSigma[1, n]^[n - DivisorSigma[0, n]], {n, 50}] PROG (PARI) s=[]; for(n=1, 30, s=concat(s, sigma(n, 1)^(n-sigma(n, 0)))); s \\ Colin Barker, Jan 24 2014 CROSSREFS Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236287 (sigma(n)^tau(n)). Sequence in context: A024054 A289381 A126577 * A073164 A297215 A134900 Adjacent sequences:  A236285 A236286 A236287 * A236289 A236290 A236291 KEYWORD nonn AUTHOR Jaroslav Krizek, Jan 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 11:17 EDT 2021. Contains 342886 sequences. (Running on oeis4.)