login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236291
Number of length n binary words that contain an even number of 0's or exactly two 1's.
0
1, 1, 2, 7, 8, 26, 32, 85, 128, 292, 512, 1079, 2048, 4174, 8192, 16489, 32768, 65672, 131072, 262315, 524288, 1048786, 2097152, 4194557, 8388608, 16777516, 33554432, 67109215, 134217728, 268435862, 536870912, 1073742289, 2147483648, 4294967824, 8589934592
OFFSET
0,3
FORMULA
G.f.: (1 - x - 3*x^2 + 6*x^3 - 3*x^4 - 2*x^5 - 3*x^6 + x^7)/( (1 - 2*x)*(1 - x^2)^3 ).
a(n) = (2^(1+n))/4 for n even; a(n) = (2^(1+n)-2*n+2*n^2)/4 for n odd. - Colin Barker, Jan 23 2014
E.g.f.: (1 + cosh(2*x) + x^2*sinh(x) + sinh(2*x))/2. - Stefano Spezia, Mar 20 2022
EXAMPLE
a(3)=7 because we have: 001, 010, 011, 100, 101, 110, 111.
MATHEMATICA
nn=30; CoefficientList[Series[(1-x-3*x^2+6*x^3-3*x^4-2*x^5-3*x^6+x^7)/ ((1-2*x)*(1-x^2)^3), {x, 0, nn}], x]
LinearRecurrence[{2, 3, -6, -3, 6, 1, -2}, {1, 1, 2, 7, 8, 26, 32, 85}, 40] (* Harvey P. Dale, Dec 18 2022 *)
CROSSREFS
Cf. A161680 (words containing exactly two 1's), A011782 (words containing an even number of 0's), A000384 (words containing an even number of 0's and exactly 2 1's).
Sequence in context: A291629 A117558 A117559 * A190175 A081700 A093795
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Jan 21 2014
EXTENSIONS
More terms from Colin Barker, Jan 23 2014
STATUS
approved