OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
FORMULA
G.f.: (1 - x + x^2 - x^4 + 2*x^5 - x^6) / ( (1 - x)^2 * (1 - x^8) ).
a(n) = a(-8 - n) = A220838(n + 5) for all n in Z.
0 = (a(n+5) - 2*a(n+3) + a(n+1)) * (a(n+4) - 2*a(n+2) * a(n)) for all n in Z.
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 9*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1-x+x^2-x^4+2*x^5-x^6)/((1-x)^2*(1-x^8)), {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
PROG
(PARI) {a(n) = if( n<-4, n = -8-n); if( n<0, -(n==-4), polcoeff( (1 - x + x^2 - x^4 + 2*x^5 - x^6) / ( (1 - x)^2 * (1 - x^8) ) + x * O(x^n), n))};
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2-x^4+2*x^5-x^6)/((1-x)^2*(1-x^8)))); // G. C. Greubel, Aug 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 21 2014
STATUS
approved