login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362857
Expansion of e.g.f. exp(-2*x) / (1 + LambertW(-x)).
2
1, -1, 4, 7, 120, 1373, 21028, 373931, 7670736, 178064281, 4615519884, 132139421423, 4141235867992, 141016013784917, 5184372688776180, 204668397165154867, 8635388122600110240, 387787185320578895537, 18467131524896950511644
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
G.f.: Sum_{k>=0} (k*x)^k / (1 + 2*x)^(k+1).
a(n) = Sum_{k=0..n} (-2)^(n-k) * k^k * binomial(n,k).
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[-2x]/(1+LambertW[-x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 26 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2*x)/(1 + lambertw(-x))))
CROSSREFS
Column k=2 of A362856.
Cf. A362859.
Sequence in context: A322723 A220003 A024054 * A289381 A126577 A236288
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 05 2023
STATUS
approved