login
A362859
Expansion of e.g.f. exp(-x) / (1 + LambertW(-2*x)).
2
1, 1, 13, 173, 3321, 81529, 2443333, 86475493, 3529941873, 163260749681, 8437633695741, 481912844592541, 30142773978386281, 2049173019206244073, 150443505029536707381, 11862692305729094644949, 999864950902004743707873, 89709634016056661732903137
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
G.f.: Sum_{k>=0} (2*k*x)^k / (1 + x)^(k+1).
a(n) = (-1)^n * Sum_{k=0..n} (-2*k)^k * binomial(n,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-x)/(1 + lambertw(-2*x))))
CROSSREFS
Column k=2 of A362019.
Sequence in context: A296585 A219021 A065544 * A096719 A296677 A295507
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, May 05 2023
STATUS
approved