login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362856
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (-k)^(n-j) * j^j * binomial(n,j).
3
1, 1, 1, 1, 0, 4, 1, -1, 3, 27, 1, -2, 4, 17, 256, 1, -3, 7, 7, 169, 3125, 1, -4, 12, -9, 120, 2079, 46656, 1, -5, 19, -37, 121, 1373, 31261, 823543, 1, -6, 28, -83, 208, 797, 21028, 554483, 16777216, 1, -7, 39, -153, 441, 21, 14517, 373931, 11336753, 387420489
OFFSET
0,6
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. of column k: exp(-k*x) / (1 + LambertW(-x)).
G.f. of column k: Sum_{j>=0} (j*x)^j / (1 + k*x)^(j+1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, ...
4, 3, 4, 7, 12, 19, ...
27, 17, 7, -9, -37, -83, ...
256, 169, 120, 121, 208, 441, ...
3125, 2079, 1373, 797, 21, -1525, ...
PROG
(PARI) T(n, k) = sum(j=0, n, (-k)^(n-j)*j^j*binomial(n, j));
CROSSREFS
Columns k=0..3 give A000312, (-1)^n * A069856(n), A362857, A362858.
Main diagonal gives A290158.
Cf. A362019.
Sequence in context: A255511 A014518 A316584 * A146325 A333807 A069289
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, May 05 2023
STATUS
approved