login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316584
Array read by antidiagonals: T(n,k) is the number of elements x in GL(2,Z_n) with x^k == I mod n where I is the identity matrix.
2
1, 1, 1, 1, 4, 1, 1, 3, 14, 1, 1, 4, 9, 28, 1, 1, 1, 20, 9, 32, 1, 1, 6, 1, 64, 21, 56, 1, 1, 1, 30, 1, 184, 27, 58, 1, 1, 4, 1, 60, 25, 80, 171, 176, 1, 1, 3, 32, 1, 72, 1, 100, 33, 110, 1, 1, 4, 9, 64, 1, 180, 1, 640, 297, 128, 1, 1, 1, 14, 9, 224, 1, 846, 1, 164, 63, 134, 1
OFFSET
1,5
COMMENTS
All columns are multiplicative.
Some terms of this sequence may also be computed using a formula given by Kent Morrison (section 1.11 and 2.5 in the reference). See A053725 for a PARI implementation.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = Sum_{d|k} A316566(n, d).
Conjecture: T(p,p) = p^2 for p prime.
EXAMPLE
Array begins:
======================================================
n\k | 1 2 3 4 5 6 7 8 9 10
------+-----------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 4 3 4 1 6 1 4 3 4 ...
3 | 1 14 9 20 1 30 1 32 9 14 ...
4 | 1 28 9 64 1 60 1 64 9 28 ...
5 | 1 32 21 184 25 72 1 224 21 80 ...
6 | 1 56 27 80 1 180 1 128 27 56 ...
7 | 1 58 171 100 1 846 49 184 171 58 ...
8 | 1 176 33 640 1 432 1 1024 33 176 ...
9 | 1 110 297 164 1 1566 1 272 729 110 ...
10 | 1 128 63 736 25 432 1 896 63 320 ...
11 | 1 134 111 244 1325 354 1 464 111 5950 ...
12 | 1 392 81 1280 1 1800 1 2048 81 392 ...
13 | 1 184 549 1096 1 2736 469 1408 549 184 ...
14 | 1 232 513 400 1 5076 49 736 513 232 ...
15 | 1 448 189 3680 25 2160 1 7168 189 1120 ...
...
CROSSREFS
Column 2 is A066907.
Sequence in context: A320438 A255511 A014518 * A362856 A146325 A333807
KEYWORD
nonn,mult,tabl
AUTHOR
Andrew Howroyd, Jul 07 2018
STATUS
approved