login
A362862
a(n) = (-1)^n * Sum_{k=0..n} (-n*k)^k * binomial(n,k).
1
1, 0, 13, 629, 58993, 8998399, 2035844461, 640881617123, 267995012680641, 143734541641235567, 96200314049944377901, 78599287990433271805699, 76993408916168689318057201, 89072357257840197226050646151
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * [x^n] exp(-x) / (1 + LambertW(-n*x)).
a(n) = [x^n] Sum_{k>=0} (n*k*x)^k / (1 + x)^(k+1).
PROG
(PARI) a(n) = (-1)^n * sum(k=0, n, (-n*k)^k*binomial(n, k));
CROSSREFS
Main diagonal of A362019.
Cf. A290158.
Sequence in context: A296951 A374605 A372243 * A351507 A067407 A143734
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 06 2023
STATUS
approved