OFFSET
0,3
REFERENCES
Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000
Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), pp. 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47; ResearchGate link; preprint, 2016.
J.-L. Mauclaire and Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
FORMULA
Asymptotically: a(n) = n*log(n)/log(3) + n*F(log(n)/log(3)) where F is a continuous function of period 1 nowhere differentiable (see Allouche & Shallit book).
MATHEMATICA
a[n_] := Plus @@ IntegerDigits[n, 3]; Accumulate @ Array[a, 60, 0] (* Amiram Eldar, Dec 09 2021 *)
PROG
(PARI) s(k, n)=n-(k-1)*sum(m=1, n, valuation(m, k));
a(n)=sum(i=0, n, s(3, i))
(PARI) a(n)= sum(i=1, n, sumdigits(i, 3)); \\ Ruud H.G. van Tol, Nov 19 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Jun 08 2004
STATUS
approved