login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301654
Circumference of the n-triangular honeycomb acute knight graph.
1
0, 0, 1, 3, 4, 6, 9, 11, 14, 18, 21, 25, 30, 34, 39, 45, 50, 56, 63, 69, 76, 84, 91, 99, 108, 116, 125, 135, 144, 154, 165, 175, 186, 198, 209, 221, 234, 246, 259, 273, 286, 300, 315, 329, 344, 360, 375, 391, 408, 424, 441, 459, 476, 494, 513, 531, 550, 570, 589, 609, 630, 650
OFFSET
1,4
COMMENTS
Sequence extended to a(1)-a(3) using the formula.
a(n) agrees with A243302(n-2) for 3 <= n <= 12.
LINKS
FORMULA
a(n) = (3*n*(n + 1) - 14 - 4*cos(2*n*Pi/3) + 4*sqrt(3)*sin(2*n*Pi/3))/18.
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 5.
G.f.: x^3*(-1 - x + x^2)/((-1 + x)^3*(1 + x + x^2)).
a(n) = floor((n+2)*(n-1)/6). - Stefanos Papanicolopulos, Dec 18 2020
E.g.f.: 1 + exp(-x/2)*(exp(3*x/2)*(3*x^2 + 6*x - 14) - 4*cos(sqrt(3)*x/2) + 4*sqrt(3)*sin(sqrt(3)*x/2))/18. - Stefano Spezia, Dec 18 2020
MATHEMATICA
Table[(3 n (n + 1) - 14 - 4 Cos[2 n Pi/3] + 4 Sqrt[3] Sin[2 n Pi/3])/18, {n, 20}]
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 0, 1, 3, 4}, 20]
CoefficientList[Series[x^2 (-1 - x + x^2)/((-1 + x)^3 (1 + x + x^2)), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A105527 A094345 A243302 * A289233 A039889 A118098
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Mar 25 2018
STATUS
approved