login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301655
a(n) = [x^n] 1/(1 - Sum_{k>=1} k^n*x^k).
3
1, 1, 5, 44, 723, 24655, 1715816, 239697569, 69557364821, 41297123651644, 49900451628509015, 125141540794392423599, 641579398300246011553552, 6729809577032172543373047313, 146355880526667013027682326650073, 6505380999057202235872595196799580684
OFFSET
0,3
COMMENTS
Number of compositions (ordered partitions) of n where there are k^n sorts of part k.
a(n) is the n-th term of invert transform of n-th powers.
FORMULA
a(n) = [x^n] 1/(1 - PolyLog(-n,x)), where PolyLog() is the polylogarithm function.
From Vaclav Kotesovec, Mar 27 2018: (Start)
a(n) ~ 3^(n^2/3) if mod(n,3)=0
a(n) ~ 3^(n*(n-4)/3-2)*2^(2*n-1)*(n-1)*(n+8) if mod(n,3)=1
a(n) ~ 3^((n+1)*(n-3)/3)*2^n*(n+1) if mod(n,3)=2
(End)
MATHEMATICA
Table[SeriesCoefficient[1/(1 - Sum[k^n x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
Table[SeriesCoefficient[1/(1 - PolyLog[-n, x]), {x, 0, n}], {n, 0, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 25 2018
STATUS
approved