login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320251
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{j>=1} j^k*x^j).
1
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 8, 8, 1, 1, 9, 18, 21, 16, 1, 1, 17, 44, 63, 55, 32, 1, 1, 33, 114, 207, 221, 144, 64, 1, 1, 65, 308, 723, 991, 776, 377, 128, 1, 1, 129, 858, 2631, 4805, 4752, 2725, 987, 256, 1, 1, 257, 2444, 9843, 24655, 31880, 22769, 9569, 2584, 512
OFFSET
0,6
COMMENTS
A(n,k) is the invert transform of k-th powers evaluated at n.
LINKS
FORMULA
G.f. of column k: 1/(1 - PolyLog(-k,x)), where PolyLog() is the polylogarithm function.
EXAMPLE
G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k + 1) + 3^k + 1)*x^3 + (3*2^k + 2^(2*k + 1) + 2*3^k + 1)*x^4 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, ...
4, 8, 18, 44, 114, 308, ...
8, 21, 63, 207, 723, 2631, ...
16, 55, 221, 991, 4805, 24655, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 - Sum[i^k x^i, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 - PolyLog[-k, x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..3 give A011782, A088305, A033453, A144109.
Main diagonal gives A301655.
Cf. A144048.
Sequence in context: A336187 A171881 A321877 * A210341 A160449 A326322
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Oct 08 2018
STATUS
approved