login
A210341
Triangle generated by T(n,k) = Fibonacci(n-k+2)^k.
5
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 9, 8, 1, 1, 8, 25, 27, 16, 1, 1, 13, 64, 125, 81, 32, 1, 1, 21, 169, 512, 625, 243, 64, 1, 1, 34, 441, 2197, 4096, 3125, 729, 128, 1, 1, 55, 1156, 9261, 28561, 32768, 15625, 2187, 256, 1, 1, 89, 3025, 39304, 194481, 371293
OFFSET
0,5
COMMENTS
Number of tilings of an nXk chessboard using monomers and dimers of a fixed orientation. This is easy to see because the board here consists of k independent strips of length n. - Ralf Stephan, May 22 2014
Row sums = A210342
Central coefficients = A067966.
This triangle is related to the infinite Vandermonde matrix
V = [F(i+2)^j]_(i,j>=0) generated by Fibonacci numbers:
1, 1, 1, 1, 1, 1, 1
1, 2, 4, 8, 16, 32, 64
1, 3, 9, 27, 81, 243, 729
1, 5, 25, 125, 625, 3125, 15625
1, 8, 64, 512, 4096, 32768, 262144
1, 13, 169, 2197, 28561, 371293, 4826809
1, 21, 441, 9261, 194481, 4084101, 85766121
The generating series of the columns can be expressed in terms of Fibonomial coefficients (A010048) (see Riordan's paper).
LINKS
Vincenzo Librandi, Rows n = 0..90, flattened
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
FORMULA
G.f.: Sum_{k>=0} x^k/(1-Fibonacci(k+2)*x*y).
EXAMPLE
Triangle begins:
1
1, 1
1, 2, 1
1, 3, 4, 1
1, 5, 9, 8, 1
1, 8, 25, 27, 16, 1
1, 13, 64, 125, 81, 32, 1
1, 21, 169, 512, 625, 243, 64, 1
1, 34, 441, 2197, 4096, 3125, 729, 128, 1
MATHEMATICA
Flatten[Table[Fibonacci[n-k+2]^k, {n, 0, 20}, {k, 0, n}]]
PROG
(Maxima) create_list(fib(n-k+2)^k, n, 0, 20, k, 0, n);
(Magma) [Fibonacci(n-k+2)^k: k in [0..n], n in [0..10]]; /* Alternatively: */ [[Fibonacci(n-k+2)^k: k in [0..n]]: n in [0..8]]; // Bruno Berselli, Mar 28 2012
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Emanuele Munarini, Mar 20 2012
STATUS
approved