

A210338


Primes that can be represented exactly in two ways as a^2 + b^2 + c^2, 0 < a <= b <= c.


1



41, 59, 83, 107, 113, 137, 139, 181, 197, 211, 229, 283, 307, 313, 317, 331, 337, 373, 379, 421, 457, 499, 541, 547, 577, 613, 643, 709, 757, 853, 877, 883, 907, 1093, 1213
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence is probably complete. Is there a proof of this?
There are no more terms < 10^7.  Donovan Johnson, Mar 22 2012


LINKS

Table of n, a(n) for n=1..35.


EXAMPLE

{p,a,b,c}:
{41,1,2,6}, {41,3,4,4}
{59,1,3,7}, {59,3,5,5}
{83,1,1,9}, {83,3,5,7}
{107,1,5,9}, {107,3,7,7}.


CROSSREFS

Cf. A181786, A210311.
Sequence in context: A172406 A161613 A345042 * A139890 A082932 A290005
Adjacent sequences: A210335 A210336 A210337 * A210339 A210340 A210341


KEYWORD

nonn


AUTHOR

Zak Seidov, Mar 20 2012


STATUS

approved



