login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210339
Generalized Cullen primes: any primes that can be written in the form n*b^n + 1 with n+2 > b > 2.
4
19, 193, 52489, 114689, 9000000001, 259374246011, 38280596832649217, 59296646043258913, 408700964355468751, 2434970217729660813313, 13576803638250229989377, 21000000000000000000001, 3140085798164163223281069127, 4818833289797717549937328129
OFFSET
1,1
REFERENCES
Harvey Dubner, Generalized Cullen numbers, J. Recreational Math. 21 (1989), pp. 190-194.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..92
Chris Caldwell, The Prime Glossary, Cullen prime
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 57
G. L. Honaker, Jr. and Chris Caldwell, 15545...00001 (1008-digits)
G. L. Honaker, Jr. and Chris Caldwell, 36869...81251 (10002-digits)
PrimeGrid, Home Page
Wikipedia, Cullen number
EXAMPLE
81*2^324 + 1 is a prime number and 81*2^324 + 1 = 81*16^81 + 1, so this number is in the sequence.
MATHEMATICA
lst = {}; Do[p = n*b^n + 1; If[p < 10^200 && PrimeQ[p], AppendTo[lst, p]], {b, 3, 100}, {n, b - 1, 413}]; Sort@lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved