login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Cullen primes: any primes that can be written in the form n*b^n + 1 with n+2 > b > 2.
4

%I #13 Apr 03 2023 10:36:13

%S 19,193,52489,114689,9000000001,259374246011,38280596832649217,

%T 59296646043258913,408700964355468751,2434970217729660813313,

%U 13576803638250229989377,21000000000000000000001,3140085798164163223281069127,4818833289797717549937328129

%N Generalized Cullen primes: any primes that can be written in the form n*b^n + 1 with n+2 > b > 2.

%D Harvey Dubner, Generalized Cullen numbers, J. Recreational Math. 21 (1989), pp. 190-194.

%H Arkadiusz Wesolowski, <a href="/A210339/b210339.txt">Table of n, a(n) for n = 1..92</a>

%H Chris Caldwell, <a href="https://t5k.org/top20/page.php?id=42">The Top 20 Generalized Cullen Primes</a>

%H Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/Cullens.html">Cullen prime</a>

%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/21842.html">Prime Curios! 57</a>

%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/19503.html">15545...00001 (1008-digits)</a>

%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/20075.html">36869...81251 (10002-digits)</a>

%H PrimeGrid, <a href="http://www.primegrid.com">Home Page</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Cullen_number">Cullen number</a>

%e 81*2^324 + 1 is a prime number and 81*2^324 + 1 = 81*16^81 + 1, so this number is in the sequence.

%t lst = {}; Do[p = n*b^n + 1; If[p < 10^200 && PrimeQ[p], AppendTo[lst, p]], {b, 3, 100}, {n, b - 1, 413}]; Sort@lst

%Y Cf. A050920, A005849, A006552, A007646.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Mar 20 2012