login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039889
Number of partitions satisfying cn(2,5) < cn(1,5) + cn(4,5) and cn(3,5) < cn(1,5) + cn(4,5).
1
1, 1, 1, 3, 4, 6, 9, 11, 17, 26, 32, 46, 60, 78, 111, 138, 183, 236, 297, 399, 489, 630, 794, 978, 1262, 1541, 1923, 2392, 2907, 3638, 4418, 5406, 6617, 7980, 9755, 11772, 14193, 17148, 20514, 24688, 29549, 35242, 42111, 50017, 59446
OFFSET
1,4
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: 2 < 1 + 4 and 3 < 1 + 4 (BBMAAp).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..100
PROG
(PARI) has(vs)=my(cn=vector(5)); for(i=1, #vs, cn[vs[i]%5+1]++); cn[3]<cn[2]+cn[5] && cn[4]<cn[2]+cn[5]
a(n)=my(s); forpart(p=n, if(has(p), s++)); s \\ Charles R Greathouse IV, Feb 18 2021
CROSSREFS
Sequence in context: A243302 A301654 A289233 * A118098 A367477 A022297
KEYWORD
nonn
STATUS
approved