login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137798
Partial sums of A137797.
1
0, 0, 4, 8, 16, 14, 16, 18, 24, 30, 30, 30, 34, 38, 46, 44, 46, 48, 54, 60, 60, 60, 64, 68, 76, 74, 76, 78, 84, 90, 90, 90, 94, 98, 106, 104, 106, 108, 114, 120, 120, 120, 124, 128, 136, 134, 136, 138, 144, 150, 150, 150, 154, 158, 166, 164, 166, 168, 174, 180, 180, 180
OFFSET
0,3
FORMULA
f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).
a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - Colin Barker, Dec 16 2014
G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014
MATHEMATICA
Accumulate[LinearRecurrence[{-1, 0, 0, 0, 1, 1}, {0, 0, 4, 4, 8, -2, 2}, 100]] (* or *) LinearRecurrence[{0, 1, 0, 0, 1, 0, -1}, {0, 0, 4, 8, 16, 14, 16}, 100] (* Harvey P. Dale, Jun 08 2015 *)
PROG
(Python)
sequence = []
l = list(range(20))
while len(l) > 0:
a = l.pop(0)
z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a))
sequence.append(z)
print(sequence)
(PARI) concat([0, 0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
CROSSREFS
Cf. A137797.
Sequence in context: A110652 A354778 A059373 * A312754 A312755 A312756
KEYWORD
easy,nonn
AUTHOR
William A. Tedeschi, Feb 10 2008
STATUS
approved