OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,1,0,-1).
FORMULA
f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).
a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - Colin Barker, Dec 16 2014
G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014
MATHEMATICA
Accumulate[LinearRecurrence[{-1, 0, 0, 0, 1, 1}, {0, 0, 4, 4, 8, -2, 2}, 100]] (* or *) LinearRecurrence[{0, 1, 0, 0, 1, 0, -1}, {0, 0, 4, 8, 16, 14, 16}, 100] (* Harvey P. Dale, Jun 08 2015 *)
PROG
(Python)
sequence = []
l = list(range(20))
while len(l) > 0:
a = l.pop(0)
z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a))
sequence.append(z)
print(sequence)
(PARI) concat([0, 0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
William A. Tedeschi, Feb 10 2008
STATUS
approved