login
A137798
Partial sums of A137797.
1
0, 0, 4, 8, 16, 14, 16, 18, 24, 30, 30, 30, 34, 38, 46, 44, 46, 48, 54, 60, 60, 60, 64, 68, 76, 74, 76, 78, 84, 90, 90, 90, 94, 98, 106, 104, 106, 108, 114, 120, 120, 120, 124, 128, 136, 134, 136, 138, 144, 150, 150, 150, 154, 158, 166, 164, 166, 168, 174, 180, 180, 180
OFFSET
0,3
FORMULA
f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).
a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - Colin Barker, Dec 16 2014
G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014
MATHEMATICA
Accumulate[LinearRecurrence[{-1, 0, 0, 0, 1, 1}, {0, 0, 4, 4, 8, -2, 2}, 100]] (* or *) LinearRecurrence[{0, 1, 0, 0, 1, 0, -1}, {0, 0, 4, 8, 16, 14, 16}, 100] (* Harvey P. Dale, Jun 08 2015 *)
PROG
(Python)
sequence = []
l = list(range(20))
while len(l) > 0:
a = l.pop(0)
z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a))
sequence.append(z)
print(sequence)
(PARI) concat([0, 0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
CROSSREFS
Cf. A137797.
Sequence in context: A110652 A354778 A059373 * A312754 A312755 A312756
KEYWORD
easy,nonn
AUTHOR
William A. Tedeschi, Feb 10 2008
STATUS
approved