login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137798 Partial sums of A137797. 1

%I

%S 0,0,4,8,16,14,16,18,24,30,30,30,34,38,46,44,46,48,54,60,60,60,64,68,

%T 76,74,76,78,84,90,90,90,94,98,106,104,106,108,114,120,120,120,124,

%U 128,136,134,136,138,144,150,150,150,154,158,166,164,166,168,174,180,180,180

%N Partial sums of A137797.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,0,-1).

%F f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).

%F a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - _Colin Barker_, Dec 16 2014

%F G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - _Colin Barker_, Dec 16 2014

%t Accumulate[LinearRecurrence[{-1,0,0,0,1,1},{0,0,4,4,8,-2,2},100]] (* or *) LinearRecurrence[{0,1,0,0,1,0,-1},{0,0,4,8,16,14,16},100] (* _Harvey P. Dale_, Jun 08 2015 *)

%o Python (Complete):

%o .Sequence = []

%o .l = range('Choose Range')

%o .while len(l) > 0:

%o ... a = l.pop(0)

%o ... z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a))

%o ... Sequence.append(z)

%o .print Sequence

%o (PARI) concat([0,0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Dec 16 2014

%Y Cf. A137797.

%K easy,nonn

%O 0,3

%A _William A. Tedeschi_, Feb 10 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 21:44 EDT 2022. Contains 354071 sequences. (Running on oeis4.)