Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 26 2024 19:16:33
%S 0,0,4,8,16,14,16,18,24,30,30,30,34,38,46,44,46,48,54,60,60,60,64,68,
%T 76,74,76,78,84,90,90,90,94,98,106,104,106,108,114,120,120,120,124,
%U 128,136,134,136,138,144,150,150,150,154,158,166,164,166,168,174,180,180,180
%N Partial sums of A137797.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,0,-1).
%F f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2).
%F a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - _Colin Barker_, Dec 16 2014
%F G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - _Colin Barker_, Dec 16 2014
%t Accumulate[LinearRecurrence[{-1,0,0,0,1,1},{0,0,4,4,8,-2,2},100]] (* or *) LinearRecurrence[{0,1,0,0,1,0,-1},{0,0,4,8,16,14,16},100] (* _Harvey P. Dale_, Jun 08 2015 *)
%o (Python)
%o sequence = []
%o l = list(range(20))
%o while len(l) > 0:
%o a = l.pop(0)
%o z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a))
%o sequence.append(z)
%o print(sequence)
%o (PARI) concat([0,0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Dec 16 2014
%Y Cf. A137797.
%K easy,nonn
%O 0,3
%A _William A. Tedeschi_, Feb 10 2008