login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140874
Triangle T(n,k) = binomial(n,k+2)-2*binomial(n,k+1)-binomial(n,k) read by rows, 0<=k<=n-2, n>=2.
0
-4, -4, -8, -3, -12, -13, -1, -15, -25, -19, 2, -16, -40, -44, -26, 6, -14, -56, -84, -70, -34, 11, -8, -70, -140, -154, -104, -43, 17, 3, -78, -210, -294, -258, -147, -53, 24, 20, -75, -288, -504, -552, -405, -200, -64
OFFSET
2,1
COMMENTS
Row sums are 4-2^(n+1).
EXAMPLE
-4;
-4, -8;
-3, -12, -13;
-1, -15, -25, -19;
2, -16, -40, -44, -26;
6, -14, -56, -84, -70, -34;
11, -8, -70, -140, -154, -104, -43;
17, 3, -78, -210, -294, -258, -147, -53;
24, 20, -75, -288, -504, -552, -405, -200, -64;
MATHEMATICA
Clear[T, D2, x, a, n, m] T[n_, m_] := Binomial[n, m] D2[n_, m_] := If[m + 2 <= n, T[n, m + 2] - 2*T[n, m + 1] - T[n, m], {} ]; a = Table[Flatten[Table[D2[n, m], {m, 0, n}]], {n, 0, 10}]; Flatten[a]
CROSSREFS
Cf. A007318.
Sequence in context: A137797 A358561 A176295 * A355234 A021227 A349778
KEYWORD
easy,tabl,sign
AUTHOR
EXTENSIONS
Sign in definition corrected by R. J. Mathar, Sep 09 2013
STATUS
approved