login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140877
A triangular sequence based on second integer differential using columns n and rows m, in the ChebyshevT T(n,m): d20(n,m)=T(n+2,m)-2*T(n+1,m)+T(n,m); d02(n,m)=T(n,m+2)-2*T(n,m+1)+T(n,m); D2(n,m)=d20(n,m)+d02(n,m).
0
4, -7, 6, -8, -17, 4, 17, -22, -44, -16, 12, 51, -48, -120, -96, -31, 46, 146, -80, -336, -352, -16, -113, 140, 412, -64, -944, -1088, 49, -78, -372, 360, 1160, 224, -2624, -3072, 20, 211, -296, -1156, 784, 3264, 1536, -7168, -8192
OFFSET
1,1
COMMENTS
Row sums are:
{2, 6, 16, 40, 96, 224, 512, 1152, 2560, 5632, 12288};
The row type functions are empty for the first two.
FORMULA
d20(n,m)=T(n+2,m)-2*T(n+1,m)+T(n,m); d02(n,m)=T(n,m+2)-2*T(n,m+1)+T(n,m); D2(n,m)=d20(n,m)+d02(n,m).
EXAMPLE
{4},
{-7, 6},
{-8, -17, 4},
{17, -22, -44, -16},
{12, 51, -48, -120, -96},
{-31, 46, 146, -80, -336, -352},
{-16, -113, 140,412, -64, -944, -1088},
{49, -78, -372, 360, 1160, 224, -2624, -3072},
{20,211, -296, -1156, 784, 3264, 1536, -7168, -8192}
MATHEMATICA
Clear[T, D02, D20, D2, x, n, m] T[n_, m_] := CoefficientList[ChebyshevT[n + 1, x], x][[m + 1]]; D02[n_, m_] := If[m + 2 <= n, T[n, m + 2] - 2*T[n, m + 1] + T[n, m], {}]; D20[n_, m_] := T[n + 2, m] - 2*T[n + 1, m] + T[n, m]; D2[n_, m_] := D02[n, m] + D20[n, m]; a = Table[Flatten[Table[D2[n, m], {m, 0, n}]], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A200353 A081845 A254339 * A293904 A069286 A079354
KEYWORD
uned,tabl,sign
AUTHOR
STATUS
approved