login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349778
Number of ways to write n as x^2 + y^k + 2*z^m, where x,y,z are nonnegative integers with x >= y, and k and m belong to the set {2,3}.
2
4, 4, 8, 4, 8, 4, 4, 4, 4, 6, 8, 4, 8, 4, 2, 2, 7, 10, 12, 8, 9, 3, 4, 2, 5, 11, 10, 8, 8, 3, 1, 3, 7, 10, 11, 5, 12, 7, 7, 4, 5, 8, 8, 7, 8, 8, 2, 3, 4, 9, 11, 8, 18, 5, 11, 8, 4, 8, 11, 8, 7, 6, 3, 8, 7, 12, 12, 12, 11, 4, 7, 5, 10, 9, 11, 7, 11, 4, 3, 6, 11, 13, 17, 9, 10, 6, 5, 7, 7, 13, 13, 12, 5, 6, 3, 3, 5, 14, 12, 10, 18
OFFSET
0,1
COMMENTS
Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 30, 120, 142.
We have verified this for all n <= 10^6.
Conjecture 2: Let S = {x^k: k = 2,3 and x = 0,1,2,...}, and let a be 3 or 4 or 5. Then any nonnegative integer can be written as x + 2*y + a*z, where x,y,z are elements of the set S.
Conjecture 3: Let T = {x^k: k = 2,3,4,... and x = 0,1,2,...}. If (b,c) is among the ordered pairs (1,2), (2,4), (2,5) and (3,2), then each n = 0,1,... can be written as x + b*y + c*z, where x and y are elements of T, and z is a square.
LINKS
Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
EXAMPLE
a(3) = 4. In fact, 3 = 1^2 + 0^2 + 2*1^2 = 1^2 + 0^2 + 2*1^3 = 1^2 + 0^3 + 2*1^2 = 1^2 + 0^3 + 2*1^3 with 1 >= 0.
a(30) = 1 with 30 = 2^2 + 2^3 + 2*3^2 and 2 >= 2.
a(120) = 1 with 120 = 10^2 + 2^2 + 2*2^3 and 10 >= 2.
a(142) = 1 with 142 = 6^2 + 2^3 + 2*7^2 and 6 >= 2.
MATHEMATICA
tab={}; Do[r=0; Do[If[IntegerQ[((n-x^2-y^k)/2)^(1/m)], r=r+1], {x, 0, Sqrt[n]}, {k, 2, 3}, {y, 0, Min[x, (n-x^2)^(1/k)]}, {m, 2, 3}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 29 2021
STATUS
approved