login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of the rational number triangle R(n, k) = -k*(n-k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n. This is a regularized Sum_{j >= 0} (k + n*j)^(-s) for s = -2 defined by analytic continuation of a generalized Hurwitz zeta function.
5

%I #26 Oct 05 2024 09:40:20

%S 0,0,0,-1,1,0,-1,0,1,0,-2,-1,1,2,0,-5,-4,0,4,5,0,-5,-5,-2,2,5,5,0,-7,

%T -1,-5,0,5,1,7,0,-28,-35,-1,-10,10,1,35,28,0,-6,-8,-7,-4,0,4,7,8,6,0,

%U -15,-21,-20,-14,-5,5,14,20,21,15,0,-55,-20,-9,-16,-35,0,35,16,9,20,55,0

%N Numerators of the rational number triangle R(n, k) = -k*(n-k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n. This is a regularized Sum_{j >= 0} (k + n*j)^(-s) for s = -2 defined by analytic continuation of a generalized Hurwitz zeta function.

%C For the denominator triangle see A268918.

%C For details and the Hurwitz reference see A267863.

%H G. C. Greubel, <a href="/A268917/b268917.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = numerator(R(n, k)) with the rational triangle R(n, k) = -k*(n - k)*(n - 2*k)/(6*n), n >= 1, k = 1, ..., n.

%e The triangle T(n, k) begins:

%e n\k 1 2 3 4 5 6 7 8 9 10 ...

%e 1: 0

%e 2: 0 0

%e 3: -1 1 0

%e 4: -1 0 1 0

%e 5: -2 -1 1 2 0

%e 6: -5 -4 0 4 5 0

%e 7: -5 -5 -2 2 5 5 0

%e 8: -7 -1 -5 0 5 1 7 0

%e 9: -28 -35 -1 -10 10 1 35 28 0

%e 10: -6 -8 -7 -4 0 4 7 8 6 0

%e ...

%e The triangle of the rationals R(n, k) begins:

%e n\k 1 2 3 4 5 6 7 8

%e 1: 0/1

%e 2: 0/1 0/1

%e 3: -1/9 1/9 0/1

%e 4: -1/4 0/1 1/4 0/1

%e 5: -2/5 -1/5 1/5 2/5 0/1

%e 6: -5/9 -4/9 0/1 4/9 5/9 0/1

%e 7: -5/7 -5/7 -2/7 2/7 5/7 5/7 10/1

%e 8: -7/8 -1/1 -5/8 0/1 5/8 1/1 7/8 0/1

%e ...

%e Row m=9: -28/27 -35/27 -1/1 -10/27 10/27 1/1 35/27 28/27 0/1;

%e Row m=10:-6/5 -8/5 -7/5 -4/5 0/1 4/5 7/5 8/5 6/5 0/1.

%e ...

%t Numerator@ Table[-k (m - k) (m - 2 k)/(6 m), {m, 15}, {k, m}] // Flatten (* _Michael De Vlieger_, Feb 26 2016 *)

%o (PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(numerator(-k*(n-k)*(n-2*k)/(6*n)), ", ");); print(););} \\ _Michel Marcus_, Feb 26 2016

%o (Magma)

%o A268917:= func< n,k | Numerator(k*(k-n)*(n-2*k)/(6*n)) >;

%o [A268917(n,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Oct 04 2024

%o (SageMath)

%o def A268917(n,k): return numerator(k*(k-n)*(n-2*k)/(6*n))

%o flatten([[A268917(n,k) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Oct 04 2024

%Y Cf. A268918 (denominators), A267863/A267864 (n=0), A268915/A268916 (n=1), A268919/A268920 (n=3).

%K sign,frac,tabl,easy

%O 1,11

%A _Wolfdieter Lang_, Feb 24 2016

%E More terms added by _G. C. Greubel_, Oct 04 2024