login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073579
Signed primes: if prime(n) even, a(n) = 0; if prime(n) == 1 (mod 4), a(n) = prime(n); if prime(n) == -1 (mod 4), a(n) = -prime(n).
5
0, -3, 5, -7, -11, 13, 17, -19, -23, 29, -31, 37, 41, -43, -47, 53, -59, 61, -67, -71, 73, -79, -83, 89, 97, 101, -103, -107, 109, 113, -127, -131, 137, -139, 149, -151, 157, -163, -167, 173, -179, 181, -191, 193, 197, -199, -211, -223, -227, 229, 233, -239
OFFSET
1,2
COMMENTS
Product_{i>1} (1/(1 - 1/a(i))) = 1 - 1/3 + 1/5 - 1/7 - 1/9 + 1/11 ...
= (Pi/4)*Product_{i>1} (1/(1 + 1/a(i)))
= (Pi/2)*Product_{i>1} (1/(1 - 1/a(i)))*Product_{i>1} (1/(1 + 1/a(i)))
= Product_{i>1} (1/(1 - 1/prime(i)^2))
= 1 + 1/3^2 + 1/5^2 + 1/7^2 + 1/9^2 + ...
= Pi^2/8.
Also prime(n)*(2 - prime(n) mod 4) = A000040(n)*A070750(n). - Reinhard Zumkeller, Oct 21 2002
This is a signed version of A160656. - T. D. Noe, Feb 28 2012
LINKS
FORMULA
a(1)=0 and for i>1: a(i) = (-1)^((prime(i)-1)/2)*prime(i).
EXAMPLE
a(1) = 0 because prime(1)=2 is neither 4k+1 nor 4k-1.
a(6) = 13 = prime(6) because 13 = 4*3 + 1.
a(8) = -19 = -prime(8) because 19 = 4*5 - 1.
MAPLE
0, seq(I^(ithprime(n)-1)*ithprime(n), n = 2..100); # G. C. Greubel, Dec 31 2019
MATHEMATICA
Join[{0}, If[Mod[#, 4]==1, #, -#]&/@Prime[Range[2, 60]]] (* Harvey P. Dale, Feb 27 2012 *)
Join[{0}, Table[p = Prime[n]; If[Mod[p, 4] == 1, p, -p], {n, 2, 100}]] (* T. D. Noe, Feb 28 2012 *)
PROG
(Haskell)
a073579 n = p * (2 - p `mod` 4) where p = a000040 n
-- Reinhard Zumkeller, Feb 28 2012
(PARI) forprime(p=2, 239, print1(p*(2-p%4), ", ")) \\ Hugo Pfoertner, Dec 17 2019
(Magma) C<i> := ComplexField(); [0] cat [Round(i^(NthPrime(n)-1)*NthPrime(n)): n in [2..100]]; // G. C. Greubel, Dec 31 2019
(Sage) [0]+[I^(nth_prime(n)-1)*nth_prime(n) for n in (2..100)] # G. C. Greubel, Dec 31 2019
CROSSREFS
Cf. A000040, A160656, A111003 (Pi^2/8).
Sequence in context: A075763 A074918 A175524 * A006005 A065091 A160656
KEYWORD
easy,sign
AUTHOR
Miklos Kristof, Aug 28 2002
EXTENSIONS
Corrected (sign changed on 179) by Harvey P. Dale, Feb 27 2012
STATUS
approved