OFFSET
1,2
COMMENTS
Product_{i>1} (1/(1 - 1/a(i))) = 1 - 1/3 + 1/5 - 1/7 - 1/9 + 1/11 ...
= (Pi/4)*Product_{i>1} (1/(1 + 1/a(i)))
= (Pi/2)*Product_{i>1} (1/(1 - 1/a(i)))*Product_{i>1} (1/(1 + 1/a(i)))
= Product_{i>1} (1/(1 - 1/prime(i)^2))
= 1 + 1/3^2 + 1/5^2 + 1/7^2 + 1/9^2 + ...
= Pi^2/8.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(1)=0 and for i>1: a(i) = (-1)^((prime(i)-1)/2)*prime(i).
EXAMPLE
a(1) = 0 because prime(1)=2 is neither 4k+1 nor 4k-1.
a(6) = 13 = prime(6) because 13 = 4*3 + 1.
a(8) = -19 = -prime(8) because 19 = 4*5 - 1.
MAPLE
0, seq(I^(ithprime(n)-1)*ithprime(n), n = 2..100); # G. C. Greubel, Dec 31 2019
MATHEMATICA
Join[{0}, If[Mod[#, 4]==1, #, -#]&/@Prime[Range[2, 60]]] (* Harvey P. Dale, Feb 27 2012 *)
Join[{0}, Table[p = Prime[n]; If[Mod[p, 4] == 1, p, -p], {n, 2, 100}]] (* T. D. Noe, Feb 28 2012 *)
PROG
(Haskell)
a073579 n = p * (2 - p `mod` 4) where p = a000040 n
-- Reinhard Zumkeller, Feb 28 2012
(PARI) forprime(p=2, 239, print1(p*(2-p%4), ", ")) \\ Hugo Pfoertner, Dec 17 2019
(Magma) C<i> := ComplexField(); [0] cat [Round(i^(NthPrime(n)-1)*NthPrime(n)): n in [2..100]]; // G. C. Greubel, Dec 31 2019
(Sage) [0]+[I^(nth_prime(n)-1)*nth_prime(n) for n in (2..100)] # G. C. Greubel, Dec 31 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Miklos Kristof, Aug 28 2002
EXTENSIONS
Corrected (sign changed on 179) by Harvey P. Dale, Feb 27 2012
STATUS
approved