login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047638
Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^13 in powers of x.
22
1, -13, 78, -286, 702, -1131, 845, 1300, -5928, 11583, -13715, 5915, 15834, -47477, 73658, -71201, 20436, 79391, -198796, 280345, -258557, 92807, 200850, -536341, 773916, -768222, 432705, 204477, -979628, 1626196, -1856569, 1471184, -452192
OFFSET
13,2
LINKS
H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
FORMULA
a(n) = [x^n]( QPochhammer(-x) - 1 )^13. - G. C. Greubel, Sep 07 2023
MAPLE
N:= 100: # to get a(13)..a(N)
G:= (mul(1-(-x)^j, j=1..N)-1)^13:
S:= series(G, x, N+1):
seq(coeff(S, x, n), n=13..N); # Robert Israel, Aug 08 2018
MATHEMATICA
With[{k=13}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x, 0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
PROG
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(13) )); // G. C. Greubel, Sep 07 2023
(SageMath)
from sage.modular.etaproducts import qexp_eta
m=75; k=13;
def f(k, x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
def A047638_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(k, x) ).list()
a=A047638_list(m); a[k:] # G. C. Greubel, Sep 07 2023
(PARI) my(x='x+O('x^40)); Vec((eta(-x)-1)^13) \\ Joerg Arndt, Sep 07 2023
KEYWORD
sign
EXTENSIONS
Definition corrected by Robert Israel, Aug 08 2018
STATUS
approved