OFFSET
1,2
LINKS
Kelvin Voskuijl, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = k*(k+1)*(2*k+1)/6 - r*(r+1)*(2*r+1)/6, where k = n*(n+1)/2 and r = n*(n-1)/2.
a(n) = (n/12)*(3*n^2 + 1)*(n^2 + 2). - Benoit Cloitre, Jun 26 2002
G.f.: x*(1+3*x+x^2)*(1+4*x+x^2)/(1-x)^6. - Colin Barker, Mar 23 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Jinyuan Wang, May 25 2020
E.g.f.: exp(x)*x*(12 + 66*x + 82*x^2 + 30*x^3 + 3*x^4)/12. - Stefano Spezia, May 14 2024
EXAMPLE
a(1) = 1^2 = 1;
a(2) = 2^2 + 3^2 = 13;
a(3) = 4^2 + 5^2 + 6^2 = 77.
MATHEMATICA
Table[Sum[ i^2, {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 35}]
PROG
(PARI) a(n) = n*(3*n^2+1)*(n^2+2)/12
(Magma) [n*(3*n^2+1)*(n^2+2)/12: n in [1..35]]; // Vincenzo Librandi, Dec 31 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 20 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 21 2002
STATUS
approved