login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072474
Sum of next n squares.
13
1, 13, 77, 294, 855, 2071, 4403, 8492, 15189, 25585, 41041, 63218, 94107, 136059, 191815, 264536, 357833, 475797, 623029, 804670, 1026431, 1294623, 1616187, 1998724, 2450525, 2980601, 3598713, 4315402, 5142019, 6090755, 7174671
OFFSET
1,2
FORMULA
a(n) = k(k+1)(2k+1)/6 - r(r+1)(2r+1)/6, where k = n(n+1)/2 and r = n(n-1)/2.
a(n) = (n/12)*(3n^2+1)*(n^2+2). - Benoit Cloitre, Jun 26 2002
G.f.: x*(1+3*x+x^2)*(1+4*x+x^2)/(1-x)^6. - Colin Barker, Mar 23 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Jinyuan Wang, May 25 2020
E.g.f.: exp(x)*x*(12 + 66*x + 82*x^2 + 30*x^3 + 3*x^4)/12. - Stefano Spezia, May 14 2024
EXAMPLE
1^2 = 1; 2^2 + 3^2 = 13; 4^2 + 5^2 + 6^2 = 77; ...
MATHEMATICA
Table[Sum[ i^2, {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 35}]
PROG
(PARI) for(n=1, 50, print1(n*(3*n^2+1)*(n^2+2)/12, ", "))
CROSSREFS
Cf. A260513 (for triangular numbers), A372583 (for pentagonal numbers), A372751 (for hexagonal numbers), A075664 (for cubes).
Sequence in context: A329109 A044581 A126423 * A186103 A194713 A047638
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 20 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 21 2002
STATUS
approved