The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050410 Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n-1} k^2. 9
 0, 1, 13, 50, 126, 255, 451, 728, 1100, 1581, 2185, 2926, 3818, 4875, 6111, 7540, 9176, 11033, 13125, 15466, 18070, 20951, 24123, 27600, 31396, 35525, 40001, 44838, 50050, 55651, 61655, 68076, 74928, 82225, 89981, 98210, 106926, 116143 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Starting with offset 1 = binomial transform of [1, 12, 25, 14, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = n*(7*n-1)*(2*n-1)/6. a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=13, a(3)=50. - Harvey P. Dale, Feb 29 2012 G.f.: x*(1 + 9*x + 4*x^2)/(1-x)^4. - Colin Barker, Mar 23 2012 E.g.f.: x*(6 + 33*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019 EXAMPLE 1^2 + 1; 2^2 + 3^2 = 13; 3^2 + 4^2 + 5^2 = 50; ... MAPLE seq(n*(7*n-1)*(2*n-1)/6, n=0..36); # Zerinvary Lajos, Dec 01 2006 MATHEMATICA Table[Sum[k^2, {k, n, 2n-1}], {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 13, 50}, 40] (* Harvey P. Dale, Feb 29 2012 *) PROG (PARI) for(n=1, 100, print1(sum(i=0, n-1, (n+i)^2), ", ")) (PARI) vector(40, n, (n-1)*(7*n-8)*(2*n-3)/6) \\ G. C. Greubel, Oct 30 2019 (MAGMA) [n*(7*n-1)*(2*n-1)/6: n in [0..40]]; // Vincenzo Librandi, Apr 27 2012 (Sage) [n*(7*n-1)*(2*n-1)/6 for n in (0..40)] # G. C. Greubel, Oct 30 2019 (GAP) List([0..40], n-> n*(7*n-1)*(2*n-1)/6); # G. C. Greubel, Oct 30 2019 CROSSREFS Cf. A072474, A240137. Sequence in context: A231947 A322615 A209995 * A121991 A121990 A050491 Adjacent sequences:  A050407 A050408 A050409 * A050411 A050412 A050413 KEYWORD nonn,easy,nice AUTHOR Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 21:01 EDT 2020. Contains 337321 sequences. (Running on oeis4.)