OFFSET
0,3
COMMENTS
Sum_{i>=1} 1/a(i) = 1.0356568858420883122567711052556541...
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of cubes with side length q. - Wesley Ivan Hurt, Apr 15 2018
A180920 lists the numbers k such that a(k) is a square. - Jon E. Schoenfield, Mar 13 2022
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Bruno Berselli, Formula for the constant 1.035656885842088312...
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: x*(1 + 30*x + 51*x^2 + 8*x^3)/(1 - x)^5.
a(n) = Sum_{j=n..2n-1} j^3. - Jon E. Schoenfield, Mar 13 2022
EXAMPLE
a(3) = 216 because 216 = 3^3 + 4^3 + 5^3.
MAPLE
MATHEMATICA
Table[n^2 (3 n - 1) (5 n - 3)/4, {n, 0, 40}]
CoefficientList[Series[x (1 + 30 x + 51 x^2 + 8 x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
PROG
(Sage) [n^2*(3*n-1)*(5*n-3)/4 for n in [0..40]]
(Magma) [n^2*(3*n-1)*(5*n-3)/4: n in [0..40]];
(PARI) a(n)=n^2*(3*n-1)*(5*n-3)/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 02 2014
STATUS
approved