Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Mar 13 2022 18:29:19
%S 0,1,35,216,748,1925,4131,7840,13616,22113,34075,50336,71820,99541,
%T 134603,178200,231616,296225,373491,464968,572300,697221,841555,
%U 1007216,1196208,1410625,1652651,1924560,2228716,2567573,2943675,3359656,3818240,4322241,4874563
%N Sum of n consecutive cubes starting from n^3.
%C Sum_{i>=1} 1/a(i) = 1.0356568858420883122567711052556541...
%C Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of cubes with side length q. - _Wesley Ivan Hurt_, Apr 15 2018
%C A180920 lists the numbers k such that a(k) is a square. - _Jon E. Schoenfield_, Mar 13 2022
%H Bruno Berselli, <a href="/A240137/b240137.txt">Table of n, a(n) for n = 0..1000</a>
%H Bruno Berselli, <a href="/A240137/a240137_1.jpg">Formula for the constant 1.035656885842088312...</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F G.f.: x*(1 + 30*x + 51*x^2 + 8*x^3)/(1 - x)^5.
%F a(n) = n^2*(3*n - 1)*(5*n - 3)/4 = A000326(n)*A000566(n).
%F a(n) = A116149(-n), with A116149(0)=0.
%F a(n) = Sum_{j=n..2n-1} j^3. - _Jon E. Schoenfield_, Mar 13 2022
%e a(3) = 216 because 216 = 3^3 + 4^3 + 5^3.
%p A240137:=n->n^2*(3*n-1)*(5*n-3)/4; seq(A240137(n), n=0..40); # _Wesley Ivan Hurt_, May 09 2014
%t Table[n^2 (3 n - 1) (5 n - 3)/4, {n, 0, 40}]
%t CoefficientList[Series[x (1 + 30 x + 51 x^2 + 8 x^3)/(1 - x)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, May 09 2014 *)
%o (Sage) [n^2*(3*n-1)*(5*n-3)/4 for n in [0..40]]
%o (Magma) [n^2*(3*n-1)*(5*n-3)/4: n in [0..40]];
%o (PARI) a(n)=n^2*(3*n-1)*(5*n-3)/4 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Subsequence of A217843.
%Y Cf. A116149: sum of n consecutive cubes after n^3.
%Y Cf. A050410: sum of n consecutive squares starting from n^2.
%Y Cf. A000326 (pentagonal numbers): sum of n consecutive integers starting from n.
%Y Cf. A126274: n-th triangular number (A000217) * n-th pentagonal number (A000326).
%K nonn,easy
%O 0,3
%A _Bruno Berselli_, Apr 02 2014