login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300523
a(n) = (5*n + 5)*(5*n + 6)*(5*n + 7)/6.
3
35, 220, 680, 1540, 2925, 4960, 7770, 11480, 16215, 22100, 29260, 37820, 47905, 59640, 73150, 88560, 105995, 125580, 147440, 171700, 198485, 227920, 260130, 295240, 333375, 374660, 419220, 467180, 518665, 573800, 632710, 695520, 762355, 833340, 908600, 988260, 1072445
OFFSET
0,1
COMMENTS
Al-Saedi has discovered that p(10*n+6,4) + p(10*n+7,4) + p(10*n+8,4) == 0 (mod 5), where p(m,k) denote the number of partitions of m into at most k parts [see Theorem 3.6, formula 23, in Links and References sections].
Hirschhorn showed that p(10*n+6,4) + p(10*n+7,4) + p(10*n+8,4) = (5*n+5)*(5*n+6)*(5*n+7)/6 [see References section: paragraph 3, "Proofs of (1.5)-(1.8)"].
REFERENCES
Ali H. Al-Saedi, Using Periodicity to Obtain Partition Congruences, Journal of Number Theory, Vol. 178, 2017, pages 158-178.
Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 34-37.
LINKS
Ali H. Al-Saedi, Using Periodicity to Obtain Partition Congruences, arXiv:1609.03633 [math.NT], 2017, pages 12-13.
FORMULA
O.g.f.: 5*(7 + 16*x + 2*x^2)/(1 - x)^4 [formula 4.2 in Hirschhorn's paper].
E.g.f.: 5*(42 + 222*x + 165*x^2 + 25*x^3)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(-n) = -A300522(n-2).
MATHEMATICA
Table[(5 n + 5) (5 n + 6) (5 n + 7)/6, {n, 0, 40}]
Table[Times@@(5n+{5, 6, 7})/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {35, 220, 680, 1540}, 40] (* Harvey P. Dale, Oct 22 2019 *)
PROG
(PARI) vector(40, n, n--; (5*n+5)*(5*n+6)*(5*n+7)/6)
(Sage) [(5*n+5)*(5*n+6)*(5*n+7)/6 for n in (0..40)]
(Maxima) makelist((5*n+5)*(5*n+6)*(5*n+7)/6, n, 0, 40);
(GAP) List([0..40], n -> (5*n+5)*(5*n+6)*(5*n+7)/6);
(Magma) [(5*n+5)*(5*n+6)*(5*n+7)/6: n in [0..40]];
(Python) [(5*n+5)*(5*n+6)*(5*n+7)/6 for n in range(40)]
(Julia) [div((5*n+5)*(5*n+6)*(5*n+7), 6) for n in 0:40] |> println
CROSSREFS
Subsequence of A160790.
Sequence in context: A240137 A020262 A224104 * A257758 A195968 A104474
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 08 2018
STATUS
approved