OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
FORMULA
a(2n) = 2n-1. a(2n-1) = 2n(n-1).
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: x^2*(x^4-4*x-1) / ((x-1)^3*(x+1)^3). - Colin Barker, Apr 02 2014
a(n) = n - 1 + (2*floor((n+2)/2)^2 - 2*floor((n+2)/2) - n + 1) * (n mod 2). - Wesley Ivan Hurt, Apr 02 2014
a(n) = (n-1)*(n+3-(n-1)*(-1)^n)/4. - Wesley Ivan Hurt, Dec 05 2023
MATHEMATICA
Table[Numerator[(n - 1) Ceiling[n/2] / n], {n, 100}]
PROG
(PARI) concat(0, Vec(x^2*(x^4-4*x-1)/((x-1)^3*(x+1)^3) + O(x^100))) \\ Colin Barker, Apr 02 2014
(Magma) [(n-1)*(n+3-(n-1)*(-1)^n)/4 : n in [1..80]]; // Wesley Ivan Hurt, Dec 05 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 02 2014
STATUS
approved