login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116149
a(n) = sum of n consecutive cubes after n^3.
6
8, 91, 405, 1196, 2800, 5643, 10241, 17200, 27216, 41075, 59653, 83916, 114920, 153811, 201825, 260288, 330616, 414315, 512981, 628300, 762048, 916091, 1092385, 1292976, 1520000, 1775683, 2062341, 2382380, 2738296, 3132675, 3568193
OFFSET
1,1
FORMULA
a(n) = n^2*(1 + 3*n)*(3 + 5*n)/4.
G.f.: x*(8 +51*x + 30*x^2 + x^3)/(1-x)^5. - Colin Barker, Dec 17 2012
a(n) = A000217(2*n)^2 - A000217(n)^2. - Bruno Berselli, Aug 31 2017
From G. C. Greubel, May 10 2019: (Start)
a(n) = Sum_{k=(n+1)..2*n} k^3.
E.g.f.: x*(32 + 150*x + 104*x^2 + 15*x^3)*exp(x)/4. (End)
EXAMPLE
a(1) = sum of 1 cube after 1^3 = 2^3 = 8,
a(2) = sum of 2 cubes after 2^3 = 3^3+4^3 = 91,
a(3) = sum of 3 cubes after 3^3 = 4^3+5^3+6^3 = 405,
a(4) = sum of 4 cubes after 4^3 = 5^3+6^3+7^3+8^3 = 1196.
MATHEMATICA
With[{cbs=Range[100]^3}, Table[Total[Take[cbs, {n+1, 2n}]], {n, 35}]] (* Harvey P. Dale, Feb 13 2011 *)
PROG
(PARI) {a(n) = n^2*(1+3*n)*(3+5*n)/4}; \\ G. C. Greubel, May 10 2019
(Magma) [n^2*(1+3*n)*(3+5*n)/4: n in [1..40]]; // G. C. Greubel, May 10 2019
(Sage) [n^2*(1+3*n)*(3+5*n)/4 for n in (1..40)] # G. C. Greubel, May 10 2019
(GAP) List([1..40], n-> n^2*(1+3*n)*(3+5*n)/4) # G. C. Greubel, May 10 2019
CROSSREFS
Sequence in context: A319174 A034667 A372434 * A184709 A190943 A180912
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Apr 14 2007
STATUS
approved