Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:45:24
%S 8,91,405,1196,2800,5643,10241,17200,27216,41075,59653,83916,114920,
%T 153811,201825,260288,330616,414315,512981,628300,762048,916091,
%U 1092385,1292976,1520000,1775683,2062341,2382380,2738296,3132675,3568193
%N a(n) = sum of n consecutive cubes after n^3.
%H G. C. Greubel, <a href="/A116149/b116149.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = n^2*(1 + 3*n)*(3 + 5*n)/4.
%F G.f.: x*(8 +51*x + 30*x^2 + x^3)/(1-x)^5. - _Colin Barker_, Dec 17 2012
%F a(n) = A000217(2*n)^2 - A000217(n)^2. - _Bruno Berselli_, Aug 31 2017
%F From _G. C. Greubel_, May 10 2019: (Start)
%F a(n) = Sum_{k=(n+1)..2*n} k^3.
%F E.g.f.: x*(32 + 150*x + 104*x^2 + 15*x^3)*exp(x)/4. (End)
%e a(1) = sum of 1 cube after 1^3 = 2^3 = 8,
%e a(2) = sum of 2 cubes after 2^3 = 3^3+4^3 = 91,
%e a(3) = sum of 3 cubes after 3^3 = 4^3+5^3+6^3 = 405,
%e a(4) = sum of 4 cubes after 4^3 = 5^3+6^3+7^3+8^3 = 1196.
%t With[{cbs=Range[100]^3},Table[Total[Take[cbs,{n+1,2n}]],{n,35}]] (* _Harvey P. Dale_, Feb 13 2011 *)
%o (PARI) {a(n) = n^2*(1+3*n)*(3+5*n)/4}; \\ _G. C. Greubel_, May 10 2019
%o (Magma) [n^2*(1+3*n)*(3+5*n)/4: n in [1..40]]; // _G. C. Greubel_, May 10 2019
%o (Sage) [n^2*(1+3*n)*(3+5*n)/4 for n in (1..40)] # _G. C. Greubel_, May 10 2019
%o (GAP) List([1..40], n-> n^2*(1+3*n)*(3+5*n)/4) # _G. C. Greubel_, May 10 2019
%Y Cf. A000217, A240137.
%K nonn,easy
%O 1,1
%A _Zak Seidov_, Apr 14 2007