login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of next n squares.
13

%I #28 Jun 22 2024 14:09:23

%S 1,13,77,294,855,2071,4403,8492,15189,25585,41041,63218,94107,136059,

%T 191815,264536,357833,475797,623029,804670,1026431,1294623,1616187,

%U 1998724,2450525,2980601,3598713,4315402,5142019,6090755,7174671

%N Sum of next n squares.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = k(k+1)(2k+1)/6 - r(r+1)(2r+1)/6, where k = n(n+1)/2 and r = n(n-1)/2.

%F a(n) = (n/12)*(3n^2+1)*(n^2+2). - _Benoit Cloitre_, Jun 26 2002

%F G.f.: x*(1+3*x+x^2)*(1+4*x+x^2)/(1-x)^6. - _Colin Barker_, Mar 23 2012

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - _Jinyuan Wang_, May 25 2020

%F E.g.f.: exp(x)*x*(12 + 66*x + 82*x^2 + 30*x^3 + 3*x^4)/12. - _Stefano Spezia_, May 14 2024

%e 1^2 = 1; 2^2 + 3^2 = 13; 4^2 + 5^2 + 6^2 = 77; ...

%t Table[Sum[ i^2, {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 35}]

%o (PARI) for(n=1,50,print1(n*(3*n^2+1)*(n^2+2)/12,","))

%Y Cf. A000290, A072475, A050410.

%Y Cf. A260513 (for triangular numbers), A372583 (for pentagonal numbers), A372751 (for hexagonal numbers), A075664 (for cubes).

%K nonn,easy

%O 1,2

%A _Amarnath Murthy_, Jun 20 2002

%E Edited by _Robert G. Wilson v_, Jun 21 2002