|
|
A322764
|
|
Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2.
|
|
5
|
|
|
9, 26, 92, 371, 1663, 8155, 43263, 246218, 1493344, 9600683, 65133513, 464538351, 3471671717, 27109690422, 220646396816, 1867649896679, 16408260807503, 149357276866099, 1406334890073883, 13677748330883790, 137221985081833892
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The initial 9 is also A020555(2).
|
|
REFERENCES
|
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..500
|
|
FORMULA
|
4*a(n) = 3*b(n) + 2*b(n+1) + 3*b(n+2) + 2*b(n+3) + b(n+4), where b(n) = A000110(n). - Seiichi Manyama, Nov 21 2020
|
|
PROG
|
(PARI) T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2);
vector(20, n, T(n-1, 2)) \\ Seiichi Manyama, Nov 21 2020
|
|
CROSSREFS
|
Cf. A000110 (Bell number), A020555, A322773.
Column 2 of the array in A322765.
Sequence in context: A055849 A235163 A084813 * A325585 A056409 A056399
Adjacent sequences: A322761 A322762 A322763 * A322765 A322766 A322767
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Dec 30 2018
|
|
STATUS
|
approved
|
|
|
|