The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322764 Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2. 5

%I

%S 9,26,92,371,1663,8155,43263,246218,1493344,9600683,65133513,

%T 464538351,3471671717,27109690422,220646396816,1867649896679,

%U 16408260807503,149357276866099,1406334890073883,13677748330883790,137221985081833892

%N Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2.

%C The initial 9 is also A020555(2).

%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.

%H Seiichi Manyama, <a href="/A322764/b322764.txt">Table of n, a(n) for n = 0..500</a>

%F 4*a(n) = 3*b(n) + 2*b(n+1) + 3*b(n+2) + 2*b(n+3) + b(n+4), where b(n) = A000110(n). - _Seiichi Manyama_, Nov 21 2020

%o (PARI) T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2);

%o vector(20, n, T(n-1, 2)) \\ _Seiichi Manyama_, Nov 21 2020

%Y Cf. A000110 (Bell number), A020555, A322773.

%Y Column 2 of the array in A322765.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Dec 30 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 02:47 EDT 2022. Contains 356122 sequences. (Running on oeis4.)