login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322766
Row 1 of array in A322765.
3
1, 4, 26, 249, 3274, 56135, 1207433, 31638625, 987249425, 36030130677, 1515621707692, 72603595393584, 3920675798922189, 236615520916677436, 15840357595697061964, 1168697367186883073296, 94486667847573203169757, 8328527812527985862657297, 796762955545266206229493979
OFFSET
0,2
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
LINKS
FORMULA
a(n) = A346500(n,n+1) = A346500(n+1,n). - Alois P. Heinz, Jul 21 2021
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> A(n, n+1):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 21 2021
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1,
Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n+1, k - 1] + Sum[A[n - k + j, j]*
Binomial[k-1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
a[n_] := A[n, n + 1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A210918 A052880 A090357 * A160886 A192546 A213438
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2018
STATUS
approved