login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322769
Main diagonal of array in A322765.
3
1, 4, 92, 5133, 537813, 91914202, 23456071495, 8411911367949, 4055497274641836, 2540939492105630071, 2014322292658946180922, 1977121111959534634757742, 2360026677940190304494287625, 3374607252811005168634470847052, 5706308288951111509370981721908854
OFFSET
0,2
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
LINKS
FORMULA
a(n) = A346500(2n,n). - Alois P. Heinz, Jul 20 2021
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> A(2*n, n):
seq(a(n), n=0..15); # Alois P. Heinz, Jul 21 2021
MATHEMATICA
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
a[n_] := P[n, n];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 29 2022 *)
CROSSREFS
Sequence in context: A003737 A362511 A265238 * A012071 A012217 A012135
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2018
STATUS
approved