Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 29 2022 05:47:41
%S 1,4,92,5133,537813,91914202,23456071495,8411911367949,
%T 4055497274641836,2540939492105630071,2014322292658946180922,
%U 1977121111959534634757742,2360026677940190304494287625,3374607252811005168634470847052,5706308288951111509370981721908854
%N Main diagonal of array in A322765.
%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
%H Seiichi Manyama, <a href="/A322769/b322769.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = A346500(2n,n). - _Alois P. Heinz_, Jul 20 2021
%p b:= proc(n) option remember; `if`(n=0, 1,
%p add(b(n-j)*binomial(n-1, j-1), j=1..n))
%p end:
%p A:= proc(n, k) option remember; `if`(n<k, A(k, n),
%p `if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
%p *binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
%p end:
%p a:= n-> A(2*n, n):
%p seq(a(n), n=0..15); # _Alois P. Heinz_, Jul 21 2021
%t P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
%t a[n_] := P[n, n];
%t Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Apr 29 2022 *)
%Y Cf. A322765, A346500.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Dec 30 2018