login
A322765
Array read by upwards antidiagonals: T(m,n) = number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0.
9
1, 1, 2, 2, 4, 9, 5, 11, 26, 66, 15, 36, 92, 249, 712, 52, 135, 371, 1075, 3274, 10457, 203, 566, 1663, 5133, 16601, 56135, 198091, 877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, 4140, 13082, 43263, 149410, 537813, 2014321, 7837862, 31638625, 132315780
OFFSET
0,3
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
LINKS
FORMULA
Knuth p. 779 gives a recurrence using the Bell numbers A000110 (see Maple program).
From Alois P. Heinz, Jul 21 2021: (Start)
A(n,k) = A001055(A002110(n+k)*A002110(k)).
A(n,k) = A346500(n+k,k). (End)
EXAMPLE
The array begins:
1, 2, 9, 66, 712, 10457, 198091, ...
1, 4, 26, 249, 3274, 56135, 1207433, ...
2, 11, 92, 1075, 16601, 325269, 7837862, ...
5, 36, 371, 5133, 91226, 2014321, 53840640, ...
15, 135, 1663, 26683, 537813, 13241402, 389498179, ...
52, 566, 8155, 149410, 3376696, 91914202, 2955909119, ...
203, 2610, 43263, 894124, 22451030, 670867539, 23456071495, ...
...
MAPLE
B := n -> combinat[bell](n):
P := proc(m, n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2, n-1) + P(m+1, n-1) + add( binomial(n-1, k)*P(m, k), k=0..n-1) ); fi; end; # P(m, n) (which is Knuth's notation) is T(m, n)
MATHEMATICA
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
Table[P[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *)
PROG
(PARI) {T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2)} \\ Seiichi Manyama, Nov 21 2020
CROSSREFS
Rows include A020555, A322766, A322767.
Columns include A000110, A035098, A322764, A322768.
Main diagonal is A322769.
See A322770 for partitions into distinct parts.
Sequence in context: A280362 A241130 A019822 * A281605 A199499 A351351
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 30 2018
STATUS
approved