The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322765 Array read by upwards antidiagonals: T(m,n) = number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0. 9
 1, 1, 2, 2, 4, 9, 5, 11, 26, 66, 15, 36, 92, 249, 712, 52, 135, 371, 1075, 3274, 10457, 203, 566, 1663, 5133, 16601, 56135, 198091, 877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, 4140, 13082, 43263, 149410, 537813, 2014321, 7837862, 31638625, 132315780 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. LINKS Seiichi Manyama, Antidiagonals n = 0..139, flattened FORMULA Knuth p. 779 gives a recurrence using the Bell numbers A000110 (see Maple program). From Alois P. Heinz, Jul 21 2021: (Start) A(n,k) = A001055(A002110(n+k)*A002110(k)). A(n,k) = A346500(n+k,k). (End) EXAMPLE The array begins:     1,    2,     9,     66,      712,     10457,      198091, ...     1,    4,    26,    249,     3274,     56135,     1207433, ...     2,   11,    92,   1075,    16601,    325269,     7837862, ...     5,   36,   371,   5133,    91226,   2014321,    53840640, ...    15,  135,  1663,  26683,   537813,  13241402,   389498179, ...    52,  566,  8155, 149410,  3376696,  91914202,  2955909119, ...   203, 2610, 43263, 894124, 22451030, 670867539, 23456071495, ...   ... MAPLE B := n -> combinat[bell](n): P := proc(m, n) local k; global B; option remember; if n = 0 then B(m)  else (1/2)*( P(m+2, n-1) + P(m+1, n-1) + add( binomial(n-1, k)*P(m, k), k=0..n-1) ); fi; end; # P(m, n) (which is Knuth's notation) is T(m, n) MATHEMATICA P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])]; Table[P[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *) PROG (PARI) {T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2)} \\ Seiichi Manyama, Nov 21 2020 CROSSREFS Rows include A020555, A322766, A322767. Columns include A000110, A035098, A322764, A322768. Main diagonal is A322769. See A322770 for partitions into distinct parts. Cf. A001055, A002110, A346500. Sequence in context: A280362 A241130 A019822 * A281605 A199499 A351351 Adjacent sequences:  A322762 A322763 A322764 * A322766 A322767 A322768 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Dec 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 00:08 EDT 2022. Contains 356122 sequences. (Running on oeis4.)