The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322762 Irregular triangle read by rows: to get row n, take partitions of n ordered as in A080577, and in each partition, change each j-th occurrence of k to j; use compressed notation as in A322761. 2
 1, 1, 12, 1, 11, 123, 1, 11, 12, 112, 1234, 1, 11, 11, 112, 121, 1123, 12345, 1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456, 1, 11, 11, 112, 11, 111, 1123, 121, 112, 1112, 11234, 1231, 12123, 112345, 1234567, 1, 11, 11, 112, 11, 111, 1123, 12, 111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.2.1.5, Problem 73, pp. 415, 761. LINKS Alois P. Heinz, Rows n = 1..28, flattened EXAMPLE Triangle begins:   1,   1, 12,   1, 11, 123,   1, 11, 12, 112, 1234,   1, 11, 11, 112, 121, 1123, 12345,   1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456,   ... For example, the 11 partitions of 6 are: 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111, and applying the transformation we get: 1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456. MAPLE b:= (n, i)-> `if`(n=0 or i=1, [cat(\$1..n)], [(t->     seq(map(x-> cat(\$1..(t+1-j), x), b(n-i*(t+1-j)     , i-1))[], j=1..t))(iquo(n, i)), b(n, i-1)[]]): T:= n-> map(parse, b(n\$2))[]: seq(T(n), n=1..10);  # Alois P. Heinz, Dec 30 2018 CROSSREFS Cf. A080577, A066633, A322761, A322763. Sequence in context: A334074 A010215 A059857 * A070649 A255864 A056583 Adjacent sequences:  A322759 A322760 A322761 * A322763 A322764 A322765 KEYWORD nonn,tabf,look,base AUTHOR N. J. A. Sloane, Dec 30 2018 EXTENSIONS More terms from Alois P. Heinz, Dec 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)