OFFSET
1,2
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
EXAMPLE
The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}. Summing these componentwise gives the third row: 5,8,9.
Table starts:
1;
2, 3;
5, 8, 9;
15, 25, 29, 31;
52, 89, 106, 115, 120;
...
MAPLE
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
add((p-> [p[1], expand(p[2]*x+p[1]*j)])(
b(n-1, max(m, j))), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0)[2]):
seq(T(n), n=1..10); # Alois P. Heinz, Mar 24 2016
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]]*x + p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0][[2]]];
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Franklin T. Adams-Watters, Jun 06 2006, Jun 07 2006
STATUS
approved