login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).
7

%I #23 Sep 08 2022 08:45:11

%S 1,3,9,31,120,514,2407,12205,66491,386699,2388096,15589732,107165081,

%T 773106715,5836100685,45981026703,377230766908,3215977070706,

%U 28437411817135,260380616093533,2464930698184351,24091925888687459,242802079705721156,2520198597834860148

%N a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).

%C Sum of last number in all set partitions of n+1. E.g. The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}, so a(2) = 1+2+1+2+3 = 9. - _Franklin T. Adams-Watters_, Jun 07 2006

%C Number of partitions of the (n+2)-multiset {0,0,1,2,...,n} into distinct multisets. Also number of factorizations of 2 * Product_{i=1..n+1} prime(i) into distinct factors. - _Alois P. Heinz_, Jul 30 2021

%H Vincenzo Librandi, <a href="/A087648/b087648.txt">Table of n, a(n) for n = 0..200</a>

%t f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* _Zerinvary Lajos_, Mar 31 2007 *)

%t (#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0,30]],3,1] (* _Harvey P. Dale_, Jul 20 2021 *)

%o (Magma) [(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // _Vincenzo Librandi_, Nov 13 2011

%Y Cf. A000110, A035098, A059606.

%Y Main diagonal of A120057, row sums of A120095.

%Y Column 1 of array in A322770.

%Y Row n=2 of A346520.

%K nonn

%O 0,2

%A _Vladeta Jovovic_, Sep 23 2003