Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Sep 23 2023 15:00:16
%S 1,1,5,25,173,1297,12225,124997,1492765,19452389,284145077,4500039733,
%T 78159312233,1460072616929,29459406350773,634783708448137,
%U 14613962109584749,356957383060502945,9241222160142506097,252390723655315856437,7260629936987794508973
%N Sum of ordered factorizations over all prime signatures with n factors.
%C Let f(n) = number of ordered factorizations of n (A074206(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
%C When the unordered spectrum A035310 is so ordered the sequences A000041 A000070 ...A035098 A000110 yield A000079 A001792 ... A005649 A000670 respectively.
%C Row sums of A095705. - _David Wasserman_, Feb 22 2008
%C From _Ludovic Schwob_, Sep 23 2023: (Start)
%C a(n) is the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums. The a(3) = 25 matrices:
%C [1 1 1] [1 2] [2 1] [3]
%C .
%C [1 1] [1 1] [1 1 0] [1 0 1] [0 1 1] [2] [0 2] [2 0]
%C [1 0] [0 1] [0 0 1] [0 1 0] [1 0 0] [1] [1 0] [0 1]
%C .
%C [1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
%C [1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
%C [1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
%C .
%C [0 1 0] [0 1 0] [0 0 1] [0 0 1]
%C [1 0 0] [0 0 1] [1 0 0] [0 1 0]
%C [0 0 1] [1 0 0] [0 1 0] [1 0 0] (End)
%H Alois P. Heinz, <a href="/A035341/b035341.txt">Table of n, a(n) for n = 0..250</a> (first 36 terms from David Wasserman)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PerfectPartition.html">Perfect Partition</a>
%F a(n) ~ c * n! / log(2)^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.8246323... . - _Vaclav Kotesovec_, Jan 21 2017
%e a(3) = 25 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=4, f(12)=8, f(30)=13 and 4+8+13 = 25.
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
%p end:
%p a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Aug 29 2015
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*If[j == 0, 1, Binomial[i + k - 1, k - 1]^j], {j, 0, n/i}]]];
%t a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}];
%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Oct 26 2015, after _Alois P. Heinz_, updated Dec 15 2020 *)
%o (PARI)
%o R(n,k)=Vec(-1 + 1/prod(j=1, n, 1 - binomial(k+j-1,j)*x^j + O(x*x^n)))
%o seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ _Andrew Howroyd_, Sep 23 2023
%Y Cf. A005651, A025487, A035310, A255906, A365961.
%Y Row sums of A261719.
%K nonn,nice
%O 0,3
%A _Alford Arnold_
%E More terms from _Erich Friedman_.
%E More terms from _David Wasserman_, Feb 22 2008