login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163872
Inverse binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).
2
1, 5, 19, 67, 227, 751, 2445, 7869, 25107, 79567, 250793, 786985, 2460397, 7667921, 23832931, 73902627, 228692115, 706407903, 2178511449, 6708684009, 20632428249, 63380014845, 194486530791, 596213956023, 1826103432573, 5588435470401, 17089296473655
OFFSET
0,2
COMMENTS
Also a(n) = sum {i=0..n} (-1)^(n-i) binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Peter Luschny, Swinging Factorial.
FORMULA
O.g.f.: A(x)=1/(1-x*M(x))^3, M(x) - o.g.f. of A001006. a(n) = sum(k^3/n *sum(C(n,j)*C(j,2*j-n-k), j=0..n), k=1..n). - Vladimir Kruchinin, Sep 06 2010
Recurrence: n*a(n) = (2*n+3)*a(n-1) + 3*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 21 2012
a(n) ~ 4*3^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Oct 21 2012
a(n) = (-1)^n*hypergeom([-n,3/2], [1], 4). - Peter Luschny, Apr 26 2016
MAPLE
a := proc(n) local i; add((-1)^(n-i)*binomial(n, i)/Beta(i+1, i+1), i=0..n) end:
seq(simplify((-1)^n*hypergeom([-n, 3/2], [1], 4)), n=0..26); # Peter Luschny, Apr 26 2016
MATHEMATICA
CoefficientList[Series[Sqrt[x+1]/(1-3*x)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[(-1)^(n-i)*Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 26 2013 *)
CROSSREFS
Cf. A163772.
Sequence in context: A273599 A347311 A121525 * A372884 A035344 A114277
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved