login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).
2

%I #19 May 08 2020 17:46:19

%S 1,5,19,67,227,751,2445,7869,25107,79567,250793,786985,2460397,

%T 7667921,23832931,73902627,228692115,706407903,2178511449,6708684009,

%U 20632428249,63380014845,194486530791,596213956023,1826103432573,5588435470401,17089296473655

%N Inverse binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).

%C Also a(n) = sum {i=0..n} (-1)^(n-i) binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).

%H Vincenzo Librandi, <a href="/A163872/b163872.txt">Table of n, a(n) for n = 0..300</a>

%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.

%H Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>.

%F O.g.f.: A(x)=1/(1-x*M(x))^3, M(x) - o.g.f. of A001006. a(n) = sum(k^3/n *sum(C(n,j)*C(j,2*j-n-k), j=0..n), k=1..n). - _Vladimir Kruchinin_, Sep 06 2010

%F Recurrence: n*a(n) = (2*n+3)*a(n-1) + 3*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 21 2012

%F a(n) ~ 4*3^(n-1/2)*sqrt(n)/sqrt(Pi). - _Vaclav Kotesovec_, Oct 21 2012

%F a(n) = (-1)^n*hypergeom([-n,3/2], [1], 4). - _Peter Luschny_, Apr 26 2016

%p a := proc(n) local i; add((-1)^(n-i)*binomial(n,i)/Beta(i+1,i+1),i=0..n) end:

%p seq(simplify((-1)^n*hypergeom([-n,3/2], [1], 4)),n=0..26); # _Peter Luschny_, Apr 26 2016

%t CoefficientList[Series[Sqrt[x+1]/(1-3*x)^(3/2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 21 2012 *)

%t sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[(-1)^(n-i)*Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jul 26 2013 *)

%Y Cf. A163772.

%K nonn

%O 0,2

%A _Peter Luschny_, Aug 06 2009