OFFSET
0,2
COMMENTS
First column of inverse Stolarsky array.
A rectangle of size a(n) X n approximates a golden rectangle. So does A295282(n) X n, which targets the golden ratio's underlying objective. These approximations differ first for n = 4 and generally if n = F(6*k)/2, where F(n) = A000045(n) is the n-th Fibonacci number and k >= 1. - Peter Munn, Jan 12 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Iain Fox, Table of n, a(n) for n = 0..10000 (first 1001 terms from Vincenzo Librandi)
Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, Classic Sequences.
FORMULA
Satisfies a(a(n)) = a(n) + n. - Franklin T. Adams-Watters, Aug 14 2006
a(n) = floor((A066096(2*n) + 1)/2). - Peter Munn, Jan 12 2018
MAPLE
MATHEMATICA
a[n_] := Round[n*GoldenRatio]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 27 2012 *)
PROG
(PARI) a(n) = round(n*(1+sqrt(5))/2) \\ Michel Marcus, May 20 2013
(Python)
from math import isqrt
def A007067(n): return (isqrt(5*n**2<<2)>>1)+n+1>>1 # Chai Wah Wu, Aug 26 2022
CROSSREFS
Different from A026355.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved