login
A001882
a(2n) = a(2n-1) + 2a(2n-2), a(2n+1) = a(2n) + a(2n-1), with a(1) = 2 and a(2) = 3.
(Formerly M0730 N0273)
2
2, 3, 5, 11, 16, 38, 54, 130, 184, 444, 628, 1516, 2144, 5176, 7320, 17672, 24992, 60336, 85328, 206000, 291328, 703328, 994656, 2401312, 3395968, 8198592, 11594560, 27991744, 39586304, 95569792, 135156096, 326295680, 461451776, 1114043136, 1575494912
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael Fried et al., Problem E1738, Amer. Math. Monthly, 72 (1965), 1024-1025.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: see Maple program.
MAPLE
A001882:=-(-2-3*z+3*z**2+z**3)/(1-4*z**2+2*z**4); # [Simon Plouffe in his 1992 dissertation for offset 0.]
MATHEMATICA
a[1] = 2; a[2] = 3; a[n_] := a[n] = If[EvenQ[n], a[n-1] + 2*a[n-2], a[n-1] + a[n-2]]; Table[a[n], {n, 50}] (* T. D. Noe, Aug 10 2012 *)
PROG
(PARI) x='x+O('x^50); Vec((2+3*x-3*x^2-x^3)/(1-4*x^2+2*x^4)) \\ G. C. Greubel, Aug 13 2017
CROSSREFS
Cf. A161941 (bisection).
Sequence in context: A366884 A282238 A004690 * A044042 A175179 A040060
KEYWORD
nonn
EXTENSIONS
Removed the attribute "conjectured" from the Plouffe g.f. R. J. Mathar, Aug 17 2009
STATUS
approved