The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173285 A(x) satisfies: Fibonacci(x)/x = A(x)/A(x^2). 5
 1, 1, 3, 4, 10, 14, 28, 42, 80, 122, 216, 338, 582, 920, 1544, 2464, 4088, 6552, 10762, 17314, 28292, 45606, 74236, 119842, 194660, 314502, 510082, 824584, 1336210, 2160794, 3499468, 5660262, 9163818, 14824080, 23994450, 38818530, 62823742, 101642272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2000 FORMULA a(n) = Sum_{k=0..n/2} A000045(n-2*k+1)*a(k). - R. J. Mathar, Apr 02 2010 Given M = triangle A173284, A173285 as a left-shifted vector = lim_{n->inf} M^n. G.f.: Product_{k>=0} 1/(1 - x^(2^k) - x^(2^(k + 1))). - Ilya Gutkovskiy, Aug 30 2017 a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1))) = 2.6009165618094467356830434687244547021995030468423430186926... and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 08 2022 MAPLE A173285 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*combinat[fibonacci](n-2*l+1), l=0..n/2) ; end if; end proc: seq(A173285(n), n=0..60) ; # R. J. Mathar, Apr 01 2010 MATHEMATICA a[n_] := a[n] = If[n == 0, 1, Sum[Fibonacci[n-2k+1] a[k], {k, 0, n/2}]]; a /@ Range[0, 40] (* Jean-François Alcover, Oct 02 2019 *) CROSSREFS Cf. A000045, A173284. Sequence in context: A309478 A329805 A071019 * A025084 A134512 A106523 Adjacent sequences: A173282 A173283 A173284 * A173286 A173287 A173288 KEYWORD nonn AUTHOR Gary W. Adamson, Feb 14 2010 EXTENSIONS Division through x added to definition and sequence extended by R. J. Mathar, Apr 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 04:05 EDT 2023. Contains 362992 sequences. (Running on oeis4.)